A Decision Support System for Solving Multi-Objective Redundancy Allocation Problems
نویسندگان
چکیده
The Redundancy Allocation Problem (RAP) is a reliability optimization problem in designing series-parallel systems. The reliability optimization process is intended to select multiple components with appropriate levels of redundancy by maximizing the system reliability under some predefined constraints. Several methods have been proposed to solve the RAPs. However, most of these methods often treat RAP as a single objective problem of maximizing the system reliability (or minimizing the system design cost). We propose a Decision Support System (DSS) for solving Multi-Objective RAPs (MORAPs). Initially, we use the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method to reduce the multiple objective dimensions of the problem. We then propose an efficient ε–constraint method to generate nondominated solutions on the Pareto front. Finally, we use a Data Envelopment Analysis (DEA) model to prune the non-dominated solutions. A benchmark case is presented to assess the performance of the proposed system, demonstrate the applicability of the proposed framework, and exhibit the efficacy of the procedures and algorithms.
منابع مشابه
Solving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm
A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective functi...
متن کاملIncreasing the Reliability and the Profit in a Redundancy Allocation Problem
This paper proposes a new mathematical model for multi-objective redundancy allocation problem (RAP) without component mixing in each subsystem when the redundancy strategy can be chosen for individual subsystems. Majority of the mathematical model for the multi-objective redundancy allocation problems (MORAP) assume that the redundancy strategy for each subsystem is predetermined and fixed...
متن کاملUsing NSGA II Algorithm for a Three Objectives Redundancy Allocation Problem with k-out-of-n Sub-Systems
in the new production systems, finding a way to improving the product and system reliability in design is a very important. The reliability of the products and systems may improve using different methods. One of this methods is redundancy allocation problem. In this problem by adding redundant component to sub-systems under some constraints, the reliability improved. In this paper we worked on ...
متن کاملA Multi Objective Optimization Model for Redundancy Allocation Problems in Series-Parallel Systems with Repairable Components
The main goal in this paper is to propose an optimization model for determining the structure of a series-parallel system. Regarding the previous studies in series-parallel systems, the main contribution of this study is to expand the redundancy allocation parallel to systems that have repairable components. The considered optimization model has two objectives: maximizing the system mean time t...
متن کاملSolving Redundancy Allocation Problem with Repairable Components Using Genetic Algorithm and Simulation Method
Reliability optimization problem has a wide application in engineering area. One of the most important problems in reliability is redundancy allocation problem (RAP). In this research, we worked on a RAP with repairable components and k-out-of-n sub-systems structure. The objective function was to maximize system reliability under cost and weight constraints. The aim was determining optimal com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quality and Reliability Eng. Int.
دوره 30 شماره
صفحات -
تاریخ انتشار 2014